An Exotic Group with the Haagerup Property

نویسنده

  • SYLVAIN BARRÉ
چکیده

We prove the Haagerup property for an infinite discrete group constructed using surgery on a Euclidean Tits building of type Ã2. The group Γ./ studied in this paper is the fundamental group of a 2-dimensional cell complex V./ defined by gluing 13 faces along their boundaries respecting orientation and labelling as follows:

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strongly Solid Ii1 Factors with an Exotic Masa

Using an extension of techniques of Ozawa and Popa, we give an example of a non-amenable strongly solid II1 factor M containing an “exotic” maximal abelian subalgebra A: as an A,A-bimodule, L(M) is neither coarse nor discrete. Thus we show that there exist II1 factors with such property but without Cartan subalgebras. It also follows from Voiculescu’s free entropy results that M is not an inter...

متن کامل

The Haagerup property for locally compact quantum groups

The Haagerup property for locally compact groups is generalised to the context of locally compact quantum groups, with several equivalent characterisations in terms of the unitary representations and positive-definite functions established. In particular it is shown that a locally compact quantum group G has the Haagerup property if and only if its mixing representations are dense in the space ...

متن کامل

Kazhdan and Haagerup Properties in Algebraic Groups over Local Fields

We prove some results about solvable Lie algebras endowed with a reductive action of a fixed Lie algebra. The first application consists in proving that if g is a Lie algebra over a local field of characteristic zero whose “amenable radical” is not a direct factor, then g contains a subalgebra which is isomorphic to the semidirect product of sl2 by either a nontrivial irreducible representation...

متن کامل

Haagerup Property for Algebraic Groups over Local Fields

We classify, among the linear algebraic groups over a local field of characteristic zero, those that have the Haagerup property (also called a-(T)-menability). Our method relies essentially on a discussion on the existence of a subgroup isomorphic, up to a finite covering, to the semidirect product of SL2 by an irreducible representation, or a one-dimensional central extension of an even-dimens...

متن کامل

The Haagerup property, Property (T) and the Baum-Connes conjecture for locally compact Kac-Moody groups

We indicate which symmetrizable locally compact affine or hyperbolic Kac-Moody groups satisfy Kazhdan’s Property (T), and those that satisfy its strong negation, the Haagerup property. This reveals a new class of hyperbolic Kac-Moody groups satisfying the Haagerup property, namely symmetrizable locally compact Kac-Moody groups of rank 2 or of rank 3 noncompact hyperbolic type. These groups thus...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012